↳ ITRS
↳ ITRStoIDPProof
z
f(TRUE, x, y) → f(>@z(x, y), +@z(x, 1@z), +@z(y, 2@z))
f(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
f(TRUE, x, y) → f(>@z(x, y), +@z(x, 1@z), +@z(y, 2@z))
(0) -> (0), if ((+@z(x[0], 1@z) →* x[0]a)∧(+@z(y[0], 2@z) →* y[0]a)∧(>@z(x[0], y[0]) →* TRUE))
f(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (0), if ((+@z(x[0], 1@z) →* x[0]a)∧(+@z(y[0], 2@z) →* y[0]a)∧(>@z(x[0], y[0]) →* TRUE))
f(TRUE, x0, x1)
(1) (+@z(x[0], 1@z)=x[0]1∧+@z(y[0], 2@z)=y[0]1∧>@z(x[0]1, y[0]1)=TRUE∧+@z(x[0]1, 1@z)=x[0]2∧>@z(x[0], y[0])=TRUE∧+@z(y[0]1, 2@z)=y[0]2 ⇒ F(TRUE, x[0]1, y[0]1)≥NonInfC∧F(TRUE, x[0]1, y[0]1)≥F(>@z(x[0]1, y[0]1), +@z(x[0]1, 1@z), +@z(y[0]1, 2@z))∧(UIncreasing(F(>@z(x[0]1, y[0]1), +@z(x[0]1, 1@z), +@z(y[0]1, 2@z))), ≥))
(2) (>@z(+@z(x[0], 1@z), +@z(y[0], 2@z))=TRUE∧>@z(x[0], y[0])=TRUE ⇒ F(TRUE, +@z(x[0], 1@z), +@z(y[0], 2@z))≥NonInfC∧F(TRUE, +@z(x[0], 1@z), +@z(y[0], 2@z))≥F(>@z(+@z(x[0], 1@z), +@z(y[0], 2@z)), +@z(+@z(x[0], 1@z), 1@z), +@z(+@z(y[0], 2@z), 2@z))∧(UIncreasing(F(>@z(x[0]1, y[0]1), +@z(x[0]1, 1@z), +@z(y[0]1, 2@z))), ≥))
(3) (x[0] + -2 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, y[0]1), +@z(x[0]1, 1@z), +@z(y[0]1, 2@z))), ≥)∧-2 + (-1)Bound + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0)
(4) (x[0] + -2 + (-1)y[0] ≥ 0∧x[0] + -1 + (-1)y[0] ≥ 0 ⇒ (UIncreasing(F(>@z(x[0]1, y[0]1), +@z(x[0]1, 1@z), +@z(y[0]1, 2@z))), ≥)∧-2 + (-1)Bound + (-1)y[0] + x[0] ≥ 0∧0 ≥ 0)
(5) (x[0] + -1 + (-1)y[0] ≥ 0∧x[0] + -2 + (-1)y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0]1, y[0]1), +@z(x[0]1, 1@z), +@z(y[0]1, 2@z))), ≥)∧-2 + (-1)Bound + (-1)y[0] + x[0] ≥ 0)
(6) (y[0] ≥ 0∧-1 + y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0]1, y[0]1), +@z(x[0]1, 1@z), +@z(y[0]1, 2@z))), ≥)∧-1 + (-1)Bound + y[0] ≥ 0)
(7) (1 + y[0] ≥ 0∧y[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0]1, y[0]1), +@z(x[0]1, 1@z), +@z(y[0]1, 2@z))), ≥)∧(-1)Bound + y[0] ≥ 0)
(8) (1 + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0]1, y[0]1), +@z(x[0]1, 1@z), +@z(y[0]1, 2@z))), ≥)∧(-1)Bound + y[0] ≥ 0)
(9) (1 + y[0] ≥ 0∧y[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(F(>@z(x[0]1, y[0]1), +@z(x[0]1, 1@z), +@z(y[0]1, 2@z))), ≥)∧(-1)Bound + y[0] ≥ 0)
POL(TRUE) = -1
POL(2@z) = 2
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = -1
POL(F(x1, x2, x3)) = -1 + (-1)x3 + x2
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = 1
F(TRUE, x[0], y[0]) → F(>@z(x[0], y[0]), +@z(x[0], 1@z), +@z(y[0], 2@z))
F(TRUE, x[0], y[0]) → F(>@z(x[0], y[0]), +@z(x[0], 1@z), +@z(y[0], 2@z))
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
f(TRUE, x0, x1)